61 research outputs found

    Automated operational states detection for drilling systems control in critical conditions

    No full text
    Critical events in industrial drilling should be overcome by engineers while they maintain safety and achieve their targeted operational drilling plans. Geophysical drilling requires maximum awareness of critical situations such as “Kicks”, “Fluid loss” and “Stuck pipe”. These may compromise safety and potentially halt operations with the need of staff rapid evacuations from rigs. In this paper, a robust method for the detection of operational states is proposed. Specifically, Echo State Networks (ESNs) were benchmarked and tested rigorously despite the challenging unbalanced datasets used for training. Nevertheless, these challenges were overcome and led to acceptable ESNs performances

    Multi-scale Crowd Feature Detection using Vision Sensing and Statistical Mechanics Principles

    Get PDF
    Crowd behaviour analysis using vision has been subject to many different approaches. Multi-purpose crowd descriptors are one of the more recent approaches. These descriptors provide an opportunity to compare and categorise various types of crowds as well as classify their respective behaviours. Nevertheless, the automated calculation of descriptors which are expressed as measurements with accurate interpretation is a challenging problem. In this paper, analogies between human crowds and molecular thermodynamics systems are drawn for the measurement of crowd behaviour. Specifically, a novel descriptor is defined and measured for crowd behaviour at multiple scales. This descriptor uses the concept of Entropy for evaluating the state of crowd disorder. By results, the descriptor Entropy does indeed appear to capture the desired outcome for crowd entropy while utilizing easily detectable image features. Our new approach for machine understanding of crowd behaviour is promising, while it offers new complementary capabilities to the existing crowd descriptors, for example, as will be demonstrated, in the case of spectator crowds. The scope and performance of this descriptor is further discussed in details in this paper

    The study of the fermion matrix spectral density in lattice quantum chromodynamics

    Get PDF
    One has developed a new method which enables us to implement dynamical lattice fermions in Monte-Carlo Simulation; and it is simply based on the analytical formulation of the spectral density of the eigenvalues of the fermion matrix in the Kogut-Susskind scheme (4). The ratio of the determinants is predicted, then compared to the ratio calculated via the lanczos method (8). This is done in SU(3), in the chirally broken phase (9), in a 4[superscript4] latticeat P = 5.4, and in a 6[superscript4] lattice at P = 5.5

    Intelligent Geospatial Maritime Risk Analytics Using The Discrete Global Grid System

    Get PDF
    Each year, accidents involving ships result in significant loss of life, environmental pollution and economic losses. The promotion of navigation safety through risk reduction requires methods to assess the spatial distribution of the relative likelihood of occurrence. Yet, such methods necessitate the integration of large volumes of heterogenous datasets which are not well suited to traditional data structures. This paper proposes the use of the Discrete Global Grid System (DGGS) as an efficient and advantageous structure to integrate vessel traffic, metocean, bathymetric, infrastructure and other relevant maritime datasets to predict the occurrence of ship groundings. Massive and heterogenous datasets are well suited for machine learning algorithms and this paper develops a spatial maritime risk model based on a DGGS utilising such an approach. A Random Forest algorithm is developed to predict the frequency and spatial distribution of groundings while achieving an R2 of 0.55 and a mean squared error of 0.002. The resulting risk maps are useful for decision-makers in planning the allocation of mitigation measures, targeted to regions with the highest risk. Further work is identified to expand the applications and insights which could be achieved through establishing a DGGS as a global maritime spatial data structure

    Geospatial data analysis for global maritime risk assessment using the discrete global grid system

    Get PDF
    The effective management of the safety of navigation by coastguards is challenged by the complexity in quantifying and describing the relative risk of accidents occurrence. The discovery of patterns in observation data is reliant on the collection and analysis of significant volumes of relevant heterogenous spatial datasets. Conventional approaches of risk mapping which aggregate vessel traffic and incident data into Cartesian grids can result in misrepresentation due to inherent inadequacies in this spatial data format. In this paper, we explore how the Discrete Global Grid System (DGGS) overcomes these limitations through the development of global maps of incident rates at multiple resolutions. The results demonstrate hot spots of relative high risk across different regions and clearly show that DGGS is more suited to global analysis than conventional grids. This work contributes to a greater understanding of both the disposition of maritime risk and the advantages of adopting DGGS in supporting big data analysis

    Free surface flow and wave impact at complex solid structures

    No full text
    Hydrodynamic wave loading at structures is a complex phenomenon to quantify. The design of structures to resist wave loading has been historically and predominantly achieved through empirical and experimental observations. This is due to the challenging understanding and quantification of wave impact energy transfer processes with air entrainment at solid structures. This paper investigates wave loading on such structures with effects of air entrapment. Specifically, it focuses on predicting the multi-modal oscillatory wave impact pressure signals which result from transient waves impinging upon a solid wall. A large dataset of compressible (and incompressible) numerical modelling scenarios have been generated to investigate these processes. The modelling simulation data are verified through a grid scaling analysis and validated against previous studies. Air bubble entrapment oscillatory pressure response trends are observed in the compressible simulation during wave impact. A frequency domain analysis of the impact pressure response is undertaken. The numerical modelling results are found in good agreement with theoretical and experimental observation data. These findings provide good confidence on the robustness of our numerical model foundations particularly for investigating the air bubbles formation, their mechanics and adjusted resonance frequency modes at impact with solid wall

    Spatial Modeling of Maritime Risk Using Machine Learning

    Get PDF
    Managing navigational safety is a key responsibility of coastal states. Predicting and measuring these risks has a high complexity due to their infrequent occurrence, multitude of causes, and large study areas. As a result, maritime risk models are generally limited in scale to small regions, generalized across diverse environments, or rely on the use of expert judgement. Therefore, such an approach has limited scalability and may incorrectly characterize the risk. Within this article a novel method for undertaking spatial modeling of maritime risk is proposed through machine learning. This enables navigational safety to be characterized while leveraging the significant volumes of relevant data available. The method comprises two key components: aggregation of historical accident data, vessel traffic, and other exploratory features into a spatial grid; and the implementation of several classification algorithms that predicts annual accident occurrence for various vessel types. This approach is applied to characterize the risk of collisions and groundings in the United Kingdom. The results vary between hazard types and vessel types but show remarkable capability at characterizing maritime risk, with accuracies and area under curve scores in excess of 90% in most implementations. Furthermore, the ensemble tree-based algorithms of XGBoost and Random Forest consistently outperformed other machine learning algorithms that were tested. The resultant potential risk maps provide decisionmakers with actionable intelligence in order to target risk mitigation measures in regions with the greatest requirement

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Compressed Sensing Data with Performing Audio Signal Reconstruction for the Intelligent Classification of Chronic Respiratory Diseases

    Get PDF
    Chronic obstructive pulmonary disease (COPD) concerns the serious decline of human lung functions. These have emerged as one of the most concerning health conditions over the last two decades, after cancer around the world. The early diagnosis of COPD, particularly of lung function degradation, together with monitoring the condition by physicians, and predicting the likelihood of exacerbation events in individual patients, remains an important challenge to overcome. The requirements for achieving scalable deployments of data-driven methods using artificial intelligence for meeting such a challenge in modern COPD healthcare have become of paramount and critical importance. In this study, we have established the experimental foundations for acquiring and indeed generating biomedical observation data, for good performance signal analysis and machine learning that will lead us to the intelligent diagnosis and monitoring of COPD conditions for individual patients. Further, we investigated on the multi-resolution analysis and compression of lung audio signals, while we performed their machine classification under two distinct experiments. These respectively refer to conditions involving (1) “Healthy” or “COPD” and (2) “Healthy”, “COPD”, or “Pneumonia” classes. Signal reconstruction with the extracted features for machine learning and testing was also performed for securing the integrity of the original audio recordings. These showed high levels of accuracy together with the performances of the selected machine learning-based classifiers using diverse metrics. Our study shows promising levels of accuracy in classifying Healthy and COPD and also Healthy, COPD, and Pneumonia conditions. Further work in this study will be imminently extended to new experiments using multi-modal sensing hardware and data fusion techniques for the development of the next generation diagnosis systems for COPD healthcare of the future
    • 

    corecore